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Some Major Obstacles to Simulation-Based Design
� Modeling

– Simulation-based functions are expensive and not computationally
robust

– Difficult to obtain reliable and affordable derivatives

� Optimization

– Algorithms for simulation-based design are in their infancy
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Limiting Factors
� Extreme expense of repeated simulations

– Example: turbulent computation on 1 M grid points (Nielsen and
Anderson)

� 1 day for submission, 3-4 days in queue

� 8 hours per 1 design cycle on 112 CPU

� 10 design cycles� 9000 CPU hours for a simple single-point design

� Cost of solution is driven by simulations

� Function and derivative evaluations prone to failure away from nominal
design

� Derivative-free optimization is not an option due to computational expense
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Approach
� Engineering

– A variety of approximations and models available and used for a long
time

– Ad hocoptimization techniques

� Mathematic Programming

– Generally limited to local Taylor series models

– Rigorous and robust optimization techniques

� Approximation and Model Management (AMMO)

– Use of Engineering approximations and models

– Rigorous and robust optimization techniques

– Can be used with any gradient-based algorithm
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Problem
� The analysis or simulation problem:Givenx, solve a system of coupled equations

A(x; u(x)) = 0

for u that describes the physical behavior of the system.

� The design problem (canonical formulation):Solve

minimize
x

f(x; u(x))

subject to ci(x; u(x)) = 0; i 2 E

ci(x; u(x)) � 0; i 2 I

xl � x � xu;
where, givenx,u(x) is determined fromA(x; u(x)) = 0.

� In our context, “large-scale” means computationally expensive, regardless of the
number of variables and constraints explicitly manipulated in optimization.
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Ensuring local similarity of trends
� Convergence relies on ensuring local similarity of trends

Let ~f , ~cE , and ~cI be some lower-fidelity models off , cE and cI , respectively.
At each major iteration k, xk of an AMMO algorithm, the models are required
to satisfy first-order consistency:

~f(xk) = f(xk); ~cE(xk) = cE(xk); ~cI(xk) = cI(xk)

r ~f(xk) = rf(xk); r~cE(xk) = rcE(xk); r~cI(xk) = rcI(xk)

� Models with this property locally mimic the behavior of first-order
Taylor-series models aroundxk

� Easily enforced when derivatives are available
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Enforcing First-Order Consistency
� Multiplicative “ �-correction”, Haftka, 1991:

– Given�hi(x) (say,f ) and�lo(x), define�(x) � �hi(x)

�lo(x)

– Givenxk, build �k(x) = �(xc) +r�(xk)
T (x� xk)

– Then ~�k(x) = �k(x)�lo(x) satisfies the consistency conditions atxk

� Additive correction exist. For instance (Lewis and Nash, 2000):

~�k(x) = �lo(x)+[�hi(xk)��lo(xk)]+[r�hi(xk)�r�lo(xk)]
T (x�xk)
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Examples of Variable-Fidelity Models for Use in AMMO
� Data-fitting models (polynomial RS, splines, kriging)

– Rely directly on hi-fi information; do not require derivatives; simple to
construct; difficult to sample; “curse of dimensionality”

� Reduced-order models

– Use reduced-order bases (constructed as a span of solutions and possibly
derivatives at some points) to represent field variables at other points

� Variable-accuracy models

– Converge analyses to a user-specified tolerance

� Variable-resolution models

– Executing a single physical model on meshes of varying degree of refinement

� Variable-fidelity physics models

– E.g., in aerodynamics, physical models range from inviscid, irrotational,
incompressible flow to Navier-Stokes equations for nonlinear viscous flow
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Convergence vs. Performance
� Convergence analysis relies on the consistency conditions and standard

assumptions for the convergence analysis of the underlying algorithm (see
paper for three examples)

� For convergence, need only a notion of two models, one arbitrarily
designated “high fidelity” or “truth”, the other - “low fidelity”

� Practical efficiency

– Problem/model dependent

– Depends on the ability to transfer computational load onto low-fidelity
computation, which...

– Depends on the predictive quality of the low-fidelity models (surrogates)

– In the worst case, AMMO is conventional optimization
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Example: AMMO Based on S`1QP
� AMMO can be used with any derivative-based algorithm; to date, implemented

and tested AMMO based on five algorithms

� Principle: a simple implementation with maximum use or existing software

� Problem: have not found software suitable for simulation-driven optimization

� Resolution: writing our own

� Meanwhile: nonsmooth exact penalty functions - a potential alternative to SQP;
simple merit function, similar convergence properties (Fletcher 1989)

Consider a composite penalty function

P(x; h) � f(x) + h(c(x));
wheref and c are smooth andh is convex but possibly only continuous.
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S`1QP

Fletcher’s choice ofP is the penalty function
P(x;�) = f(x) + �

X
i2E

jci(x)j+ �
X

i2I
maxf0; ci(x)g:

This is an exact penalty function if� satisfies

� > min
i2L

j�ij;

whereL is the set of all multipliers for the NLP. The model ofP is

m(xk; s;�) � q(xk; s) + �

X
i2E

jli(xk; s)j+ �
X

i2I
maxf0; li(xk; s)g;

whereq(xk; s) is the quadratic model off and li(xk; s) are linearizations of
constraints. The prototype S`1QP finds global solutionssk of

minimize

s

m(xk; s;�)

subject to k s k
1

� �k
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S`1QP, continued

The step is evaluated by examining

�k =

P(xk;�k)�P(xk + sk;�k)

m(xk; 0;�k)�m(xk; sk;�k)

as follows:

Select0 < r1 < r2 � 1 and 0 < �1 < 1 < �2.
Typical values arer1 = 0:25, r2 = 0:75, �1 = 0:25, �2 = 2.

Setxk+1 =
8<

: xk if �k � 0

xk + sk otherwise:

Set�k =
8>><

>>:
�1 k sk k if �k < r1

�2�k if �k > r2 and k sk k = �k

�k otherwise:
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S`1QP-AMMO Model and Algorithm

m(k; xk; s; �) � ~f(k; xk; s)+�
X

i2E

j~cE;i(k; xk; s)j+�
X

i2I
maxf0; ~cI;i(k; xk; s)g

whose components satisfy the consistency conditions. Note that the modelm depends
on k. as follows.

Initialization: Choosex0, �0, and constants as above.
Do k = 0; 1; : : : until convergence:

Model construction:
Construct modelm(k; xk; s; �k) ofP

Step computation:

Solve forsk
8<

: minimize

s

m(k; xk; s;�k)

subject to k s k � �k

Step evaluation:Compute�k. Accept or reject the step based on�k as above.
Updates:Updatexk, �k based on�k as above.

End do
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Convergence of S`1QP-AMMO

Theorem:

Let f; cE; cI 2 C2(
) have bounded second derivatives on a bounded


 � IRn. Let ~f , ~cE , ~cI 2 C2(
) be any models off cE , and cI , respectively,
that satisfy the first order consistency conditions and have uniformly bounded
second derivatives on
. Let fxkg 2 
 be the sequence of iterates generated
by S`1QP–AMMO. The there exists an accumulation pointx� at which the
first-order optimality conditions for minimizing P hold, that is,

maximize

�2@h�

(g� +rc��)
T s � 0 for all s;

where@h� is the generalized derivative ofh.
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An Alternative S`1QP-AMMO

Impose the following conditions on the model and the trial step:

� Smoothness:The modelm is locally Lipschitz continuous and regular with respect
to s for all (x; �) and continuous in(x; �) for all s.

� Zero-order matching: The values of the function and model coincide whens = 0.

� First-order matching: The generalized directional derivatives of the function and
model coincide whens = 0.

� Bounded parameters:The set of problem parameters is closed and bounded.

� Sufficient decrease:For any x�, there exist constants�; �; � 2 (0; 1) such thatsk

satisfies

m(k; xk; 0; �k)�m(k; xk; sk; �k) � � k g(xk) kminf�;�kg;

whereg = argming2@f k g k. These conditions are summarized in CGT 2000.
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An Alternative S`1QP-AMMO, continued

In S`1QP-AMMO, the smoothness, boundedness, zero- and first-order
matching conditions are satisfied by assumption. Guaranteeing sufficient
decrease - in progress.

Updates for S`1QP-AMMO with sufficient decrease

Select�max > 0, 0 < r1 � r2 � 1 and 0 < 1=�3 � �1 � �2 < 1 < �3.

Set(xk+1) =
(

xk + sk if �k � r1

xk otherwise:

Set�k+1 2
8>><

>>:
[�1�k; �2�k] if �k < r1

[�2�k;�k] if �k 2 [r1; r2)

[�3�k; �2�max] if �k � r2:

Convergence to a first-order critical point is immediate under these conditions
(see, e.g., Theorem 11.2.5 in CGT 2000).
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Computational Demonstrations
� Because of data-fitting model limitations, we have focused on models that

are independent of the number of variables

� Independence wrt dimension is important: in preliminary design,
problems of modest size number O(100) variables

� AMMO admits a wide variety of models and algorithms; demonstrations
are aimed at accumulating realistic experience to validate the algorithmic
performance

� Because we cannot predicta priori the relative descent characteristics of
models, must include cases of favorable and unfavorable relationship
between models

� Aerodynamic shape optimization is a good test problem: practically
important, computationally intensive, comes in a variety of dimensions

n.alexandrov@larc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center
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Demonstration Problems: Aerodynamic Optimization

minimize Integrated quantities, such as� L
D

( lift
drag)or CD (drag coefficient)

subject to constraints on, e.g., pitching and rolling moment coefficients, etc.

xl � x � xu

n.alexandrov@larc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center
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Managing Variable-Resolution Models:

(AIAA-2000-0841, Alexandrov, Lewis, Gumbert, Green, Newman)

� Analysis: Euler (NS/Euler code CFL3D, Rumsey et al., NASA LaRC)

� Conditions: M1 = 0:6; � = 3:0

� Design variables: tip chord, tip trailing edge setback

ct

b

cr =1

xt

Planform view

XLE =(0,0,0)

Profile view

T

XLE =(0,0,0)

zr
xt

� Objective: � L
D

� Constraints in lieu of multidisciplinary constraints: a lower bound on total
lift CLS, upper bounds on the pitching moment coefficientCM and the rolling
moment coefficientCl
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3D Wing Optimization: Problem Description

Low-fidelity: analysis on 97x25x17 mesh, 8 min/analysis on Sun SPARC 1:

High-fidelity: analysis on 193x49x33 mesh, 64 min/analysis on Sun SPARC 1:
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3D Wing Optimization: Problem Level Sets, Example
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3D Wing Optimization: Actual Functions vs. Spline Substitutes
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3D Wing Optimization: Actual Functions vs. Cubic Polynomial Substitutes
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3D Wing Optimization: Discussion of Results
� Function evaluations, conventional SQP vs. SQP-AMF (number of

sensitivity evaluations - same):

hi-fi eval lo-fi eval equiv hi-fi eval factor

Conventional SQP on poly 31 31

SQP-AMF on poly 4 51 4 + 51/8 = 10 3/8 2.99

Conventional SQP on splines 21 21

SQP-AMF on splines 4 28 4 + 28/8 = 7 1/2 2.8

� Optimization convergence criterion: 10�5

� Optimization was done on RSM substitutes

� Savings across methods similar
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2D Airfoil Optimization: Problem Description

Problem formulated and assembled by L.L. Green

� Analysis: Euler (NS/Euler code FLOMG, Swanson, Turkel)

� Design variables:

maximum
camber

maximum
thickness

� Objective: � L
D

� Constraints: pitching moment

� Levels of fidelity: analyses on 257x65 and 129x33 meshes

� Time/analysis on 257x65 mesh = 4 Time/analysis on 129x33 mesh

� Approximately 8 min vs 2 min per analysis on SGI Octane
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2D Airfoil Optimization: Discussion of Results
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� Savings in function/sensitivity evaluations approximately twofold (factor
ranging from 2.2 to 3.1) across all methods

� Savings lower than for the 3D wing problem due to lower computational
expense
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Managing Variable-Fidelity Physics Models: Multi-Element Airfoil
(AIAA-2000-4886, Alexandrov, Nielsen, Lewis, Anderson)

� A two-element airfoil designed to operate in a transonic regime — inclusion of
viscous effects is very important

� Governing equations: time-dependent Reynolds-averaged Navier-Stokes
A
@Q

@t
+
I

@


~Fi � ^ndl�
I

@


~Fv � ^ndl = 0;

where ~Fi and ~Fv are the inviscid and viscous fluxes, respectively

� Flow solver (FUN2D) – unstructured mesh methodology (Anderson, 1994)

� Sensitivity derivatives – hand-coded adjoint approach (Anderson, 1997)

� Conditions:

– M1 = 0:75

– Re = 9� 106

– � = 1� (global angle of attack)
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Multi-Element Airfoil, cont.
� Hi-fi model – FUN2D analysis in RANS mode

� Lo-fi model – FUN2D analysis in Euler mode

� Computing on SGI OriginTM 2000, 4 R1OK processors

Viscous mesh:
10449 nodes and 20900 triangles

t/analysis� 21 min
t/sensitivity� 21 or 42 min

Inviscid mesh:
1947 nodes and 3896 triangles

t/analysis� 23 sec
t/sensitivity� 100 or 77 sec
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Multi-Element Airfoil: Viscous Effects
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� Boundary and shear layers are visible in the viscous case.
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Multi-Element Airfoil: Computational Experiments
� Objective function: minimize drag coefficient subject to bounds on variables

� Case 1:(for visualization)

– Variables: angle of attack, y-displacement of the flap

– Solve problem with hi-fi models alone using a commercial optimization code
(PORT, Bell Labs)

– Solve the problem with AMMO, PORT used for lo-fi subproblems

� Case 2:

– Variables: angle of attack, y-displacement of the flap, geometry description of
the airfoil; 84 variables total

– Same experiment
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Multi-Element Airfoil: Models
� Time/function for inviscid model negligible compared to viscous model

� Descent trends are reversed — unusual but a good test
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Multi-Element Airfoil: AMMO Iterations with 2 Variables

Iteration 1. Starting point: � = 1:0, y-disp= 0:0

High-fidelity objective vs. corrected low-fidelity objective
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New point: � = 2:0, y-disp= �0:01

n.alexandrov@larc.nasa.gov Multidisciplinary Optimization Branch, NASA Langley Research Center



Department of Aeronautics/University of Rome, March 2002 37

Multi-Element Airfoil: AMMO Iterations with 2 Variables, cont.
� Similar effect in the next iteration

� Solution (� = 1:6305� , flap y-displacement= �0:0048) located at
iteration 2

� C initial

D = 0:0171 at (� = 1�, flap y-displacement= 0)

� Cfinal

D = 0:0148, a decrease of approximately13:45%.
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Multi-Element Airfoil: Performance Summary

Notation: No. functions / No. Gradients

Test hi-fi eval lo-fi eval total t factor

PORT with hi-fi analyses, 2 var 14/13 � 12 hrs

AMMO, 2 var 3/3 19/9 � 2:41hrs � 5

PORT with hi-fi analyses, 84 var 19/19 � 35 hrs

AMMO, 84 var 4/4 23/8 � 7:2hrs � 5
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Current Results (with E. J. Nielsen)
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Work in Progress
� Computational expense is still a difficulty

– Investigating optimal termination of the low-fidelity computations
based on sufficient predicted decrease

– Investigating MASSOUD (J.A. Samareh) as a potential robust and
efficient volume grid manipulation tool

– Choice of “optimal” models

� Explicit constraint handling in optimization problems

– Complex derivatives

– Adjoints when design variables outnumber responses

� Handling mesh adaptation or regenerating meshes in optimization

� Robust handling of analysis and mesh movement failure
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